

RUHR-UNIVERSITÄT BOCHUM

Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates in the Real World

CHES 2011, Nara September 30, 2011

David Oswald, Christof Paar Chair for Embedded Security, Ruhr-University Bochum

Acknowledgements

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

- Timo Kasper
- Christof Paar

Outline of this talk

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

- 1. Contactless Smartcards
- 2. Mifare DESFire MF3ICD40
- **3. DPA** on Mifare DESFire MF3ICD40
- **4. Template Attacks** on Mifare DESFire MF3ICD40
- 5. Lessons Learned

A brief introduction

Contactless Smartcards

Contactless Smartcards: Overview

RUHR-UNIVERSITÄT BOCHUM **Chair for Embedded Security David Oswald Christof Paar**

> **EUROPÄISCHE UNION** BUNDESREPUBLIK

> > DEUTSCHLAND

RUB

• **Contactless Smartcard** = RFID + Cryptography

- Secret key on device
- Cloning \approx extract secret key

Sources:

- Some applications
 - (Micro-)Payment
 - Passport
 - Public transport
 - Access control

Contactless Smartcards: History

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

RUB

- First generation (around 2000): Mifare Classic, Legic Prime, TI DST, Hitag, ...
 - Proprietary cipher
 - Short key (max. 48 bit)
 - Analytical attacks
- Today:

Mifare Plus, Legic Advant, Infineon SLE, SmartMX, Mifare DESFire (EV1), ...

- Analytically secure
- Side-channel attacks

Example Mifare DESFire MF3ICD40

Mifare DESFire MF3ICD40 in a nutshell

- Introduced around 2002 by Philips (now NXP)
- 3DES w/ 112-bit key for authentication and data encryption
- 4 kB non-volatile memory
 - 28 applications w/ max. 16 files each
 - 14 keys per application + 1 master key
 - Access rights on file level
- Based on asynchronous 8051
 w/ 3DES engine
- "Glue logic"

RUB

Mifare DESFire MF3ICD40: Authentication protocol

RUB

Mifare DESFire MF3ICD40: IC photograph

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

Mifare DESFire MF3ICD40: IC photograph

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

A walkthrough

DPA on Mifare DESFire MF3ICD40

Mifare DESFire MF3ICD40: Preliminaries

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

Side-channel leakage of DESFire MF3ICD40 [RFIDSec11]

Mifare DESFire MF3ICD40: Preliminaries

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

Side-channel leakage of DESFire MF3ICD40 [RFIDSec11]

Mifare DESFire MF3ICD40: Profiling

RUB

- Step 1: Understand device
- Locate plain-/ciphertext bytes using power analysis

DPA on Mifare DESFire MF3ICD40: Side-channel leakages

- Operation:
 - $C = DES_{K1}(DES^{-1}_{K2}(DES_{K1}(B)))$
- Leakage 1: Bitwise Hamming
 Distance of round 0→1 of DES_{K1}(B), frequency domain
- Leakage 2: Hamming Weight DES_{K1}(B), time domain
- Leakage 3: HD round $0 \rightarrow 1$ of DES⁻¹_{K2}, freq. domain
- Leakage 4: HW of ciphertext C

16

RUB

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

DPA on Mifare DESFire MF3ICD40: Steps

RUB

- **Operation:** $C = DES_{K1}(DES^{-1}_{K2}(DES_{K1}(B)))$
- Goal: Recover K1, K2 step-by-step
- Perform DPAs on
- 1. DES 1, round 1: max. 48/56 bit of K1 (250k traces)
- 2. Full state after DES 1: remaining bits of K1 (150k traces)
- **3. DES 2, round 2**: max. 48/56 bit of *K2* (250k traces)
- **4. Ciphertext**: remaining bits of *K2* (< 2000 traces)

DPA on Mifare DESFire MF3ICD40: Management summary

- Full key-recovery with ~ 250k traces (~ 7 hours)
- Low-cost equipment ~ 2500 USD
- \Rightarrow High **threat potential**
- Opportunities for **optimization**
 - Three 3DES operations per trace, currently only one used
 - Improved signal processing (analog/digital)
 - Combine with *templates* (next part)

Other attack vectors

Template Attacks on Mifare DESFire MF3ICD40

Template Attacks on Mifare DESFire MF3ICD40: Idea

- 3DES I/O via 8-bit bus w/ strong leakage
- Including byte-wise key transfer ⇒ template attack

Template Attacks on Mifare DESFire MF3ICD40: Details

- 256 possible values per byte (ignoring parity)
- Training set: 1,024,000 traces \triangleq 4,000 traces per value
- Test set: 1,024,000 traces
- Note: Byte 7... 0 ≠ Byte 8 ... 15
- Best results (average bit error rate)
 - 7 ... 0: **1.77 bit errors**
 - 8 ... 15: 0.51 bit errors
- **Problem:** Leakage card 1 ≠ leakage card 2

Template Attacks on Mifare DESFire MF3ICD40: Management Summary

RUB

- Template attacks in principle feasible
- Possible improvements
 - More traces
 - Better classifiers
 - Calibration

Reduce error

• Card 1 \rightarrow card 2

- Currently: Limited threat
- But: Sometimes profiling = matching device (e.g. master key known before)

Conclusions and countermeasures

Lessons Learned

Lessons learned

- Power analysis = Threat in real-world
 KeeLoq 08, DESFire 11, Xilinx bitstream 11
- One-time engineering effort high
- Then: Attacks at low cost

Source: @exiledsurfer

What to do?

RUHR-UNIVERSITÄT BOCHUM Chair for Embedded Security David Oswald Christof Paar

RUB

- DESFire MF3ICD40 replaced by **DESFire EV1**
- Use certified devices
- Use countermeasures on the system level
 - Key diversification
 - Shadow accounts
- Follow ongoing
 security research

MIFARE.net

Home > Products > MIFARE Smartcard IC's > MIFARE DESFire (MF3ICD40)

Thanks! Questions?

hg 1 Horst-Görtz Institut für IT Sicherheit

David Oswald, Christof Paar Chair for Embedded Security, Ruhr-University Bochum

